Problem-7, Portfolio

To find when it's closest to the origin use the equation external image latex2png.2.php?z=100&eq=%5Csqrt%7B(x_2-x_1)%5E2%20%7D%2B%5Csqrt%7B(y_2-y_1)%5E2%20%7D
1. Plug in the x and y parametric equations and 0 in for the x1 and y1 the equation will look like this
external image latex2png.2.php?z=100&eq=%5Csqrt%7B((-4%2B2)-0)%5E2%7D%2B%5Csqrt%7B((1%2B4)-0)%5E2%7D
2.Simplify external image latex2png.2.php?z=100&eq=%5Csqrt%7B(-4%2B2)%5E2%7D%2B%5Csqrt%7B(1%2B4)%5E2%7D
3.external image latex2png.2.php?z=100&eq=%5Csqrt%7B(-2)%5E2%7D%2B%5Csqrt%7B(5)%5E2%7D =external image latex2png.2.php?z=100&eq=%5Csqrt%7B(4)%7D%2B%5Csqrt%7B(25)%7D
4.external image latex2png.2.php?z=100&eq=2%2B5%3D7
5. Now plug 7 into the parametric equations
external image latex2png.2.php?z=100&eq=x%3D-4%2B2(7)%0A external image latex2png.2.php?z=100&eq=x%3D10%0A
external image latex2png.2.php?z=100&eq=y%3D1%2B4(7)%0A external image latex2png.2.php?z=100&eq=y%3D29%0A
6. The point on the line where it is closest to the origin is (10,29)